Thursday, February 12, 2026
  • Privacy Policy
  • Contact
  • Terms & Conditions
Environmental Magazine
Advertisement
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Fossil Fuels
  • Water
No Result
View All Result
Environmental Magazine
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Fossil Fuels
  • Water
No Result
View All Result
Environmental Magazine
No Result
View All Result
Home News

Cracking the problem: New data boost prospects for “supercritical” geothermal energy

October 16, 2024
in News
A A

Much of the potentially transformative promise of geothermal energy depends upon our ability to drill deeper and deeper, and access higher temperature resources. New data reported in Nature Communications appear to offer a favourable nod towards the viability of such schemes.

The data are among the first to show that these hotter and deeper rocks can form fractures that connect and make it more permeable – a possibility that has previously seemed uncertain.

Such fractures are important because water passing through them can become supercritical, a steam-like phase not covered by the familiar lexicon of water phases (liquid water, ice, and the vapour that makes clouds). Supercritical water “can penetrate fractures faster and more easily and can carry far more energy per well to the surface, roughly five to ten times the energy produced by today’s commercial geothermal wells”, according to “Superhot Rock Geothermal, A Vision for Zero-Carbon Energy ‘Everywhere,’” a 2021 report by the Clean Air Task Force.

The data also show that rock that fractures at superhot conditions can be ten times more permeable than rock that fractures at conditions closer to the Earth’s surface, and can also deform more readily. Those factors could make this geothermal resource “much more economic,” says Geoffrey Garrison, Vice President of Operations for Quaise Energy, one of the funders for the work. Quaise is working on a novel drilling technique for accessing superdeep, superhot rock.

Uncertainties had remained regarding the practicality of tapping this superdeep, superhot resource. Rock under such high pressures and temperatures — more than 375°C — is ductile, or gooey, as opposed to a smashable stone from your backyard. As a result, some have argued that fractures can’t be created. And if they can, will they stay open?

This latest work, led by a team at the Ecole Polytechnique Fédéral de Lausanne (EPFL), seems to confirm that fractures can indeed form in superhot, superdeep rock located near the brittle-to-ductile transition in the crust. The latter is where hard, brittle rock begins to transition into a material that’s ductile, or more pliable.

“There are also lots of other data coming out of this work that will inform our approach to tapping the resource,” Garrison said. For example, “how strong is the rock? How far do the fractures go? How many fractures can we create?”

“All of this will help us derisk the drilling involved, which is very expensive. You don’t get a lot of chances. You don’t get to drill a hole then, like hanging a picture, move it over if you’ve missed the best location.”

Peter Massie is director of the Geothermal Energy Office at the Cascade Institute, which recently released a report with the Clean Air Task Force about drilling for superhot geothermal energy. Massie, who was not involved in the Nature Communications work, made the following comment about it on X: “Exciting finding: extreme heat & pressure can help create better enhanced geothermal systems [EGS]. At very high temps, rocks become ductile (plasticky), which was expected to impede EGS. This supports [the] prospect of ultradeep, ‘supercritical’ geothermal with major boost in output.”

The research was led by Associate Professor Marie Violay, head of the Laboratory of Experimental Rock Mechanics at EPFL. Says Violay:

“This work is exciting because it presents the first permeability measurements conducted during deformation at pressure and temperature conditions characteristic of deep supercritical geothermal reservoirs near the brittle-to-ductile transition in the crust.

“We have shown that the brittle-to-ductile transition is not a cutoff for fluid circulation in the crust, which is promising for the exploitation of deep geothermal reservoirs. There are very few in situ data available, and these are among the first experimental results that shed light on such extreme conditions.”

Violay’s coauthors of the Nature Communications paper are first author Gabriel G. Meyer and Ghassan Shahin, both of EPFL, and Benoit Cordonnier of the European Synchrotron Radiation Facility.

Fissure profusion
The consistency of superhot, superdeep rock is similar to that of Silly Putty. “If you pull it slowly, it stretches out and becomes elastic. But if you pull a chunk of Silly Putty really quickly, it snaps. And that is brittle behavior,” says Garrison.

In other words, he continues, “if you stress the rock slowly enough under these extreme conditions, it may stretch and not fracture. This work shows that rock will shatter under these conditions, but it needs to be stressed quickly to do so.”

The research confirms theoretical work reported earlier this year in Geothermal Energy showing that the cracks that form create a dense “cloud of permeability” throughout the affected rock. This is in contrast to the much larger and fewer macroscopic fractures induced by the engineered geothermal systems (EGS) in use today, which operate closer to the surface and at much lower temperatures.

As a result, the simulations involved in the Geothermal Energy work predict that a superhot system can deliver five to ten times more power than typically produced today from EGS, and do so for up to two decades.

Unique experiments
Garrison notes that there are very few facilities in the world capable of making the measurements conducted at EPFL.

Says Violay, “The best part [of this research] was the development of a unique experimental machine capable of reproducing the pressure, temperature, and deformation conditions of deep supercritical reservoirs near the brittle-to-ductile transition. Additionally, we were able to combine these experimental results with in situ X-ray images obtained the ESRF (European Synchrotron Radiation Facility), offering a comprehensive view of the processes involved.”

In addition to Quaise Energy, this work was funded by the European Research Council, the Swiss National Science Foundation, The European Union’s Horizon 2020 research and innovation program, the Swiss Federal Office of Energy, and Alta Rock Energy.

ShareTweetSharePinSendShare

Related Articles

Submersible for US military uses hydrogen to charge batteries
News

Submersible for US military uses hydrogen to charge batteries

February 12, 2026
Environment Agency announces largest-ever expansion of its enforcement team
News

Environment Agency announces largest-ever expansion of its enforcement team

February 12, 2026
Latvian firm secures €930K and contracts with ESA and NATO to generate electricity on the Moon
News

Latvian firm secures €930K and contracts with ESA and NATO to generate electricity on the Moon

February 11, 2026
One third of all new cars registered in January were electric or hybrid
News

One third of all new cars registered in January were electric or hybrid

February 10, 2026
A hidden tax on green packaging? UK companies face £1.2bn recycling bill as compliance costs soar
News

A hidden tax on green packaging? UK companies face £1.2bn recycling bill as compliance costs soar

February 9, 2026
Anti-nature rhetoric damaging voter confidence in Labour, says poll
News

Anti-nature rhetoric damaging voter confidence in Labour, says poll

February 9, 2026

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

It Just Got Easier to Build Nuclear Power Plants in Wisconsin

It Just Got Easier to Build Nuclear Power Plants in Wisconsin

July 10, 2025
Infrastructure transformation enables World Ski Championship region to manage waste sustainably

Infrastructure transformation enables World Ski Championship region to manage waste sustainably

April 16, 2024

Don't miss it

‘We Will See Them in Court’: Environmental Lawyers Vow to Challenge Trump’s Repeal of Key Climate Finding
Fossil Fuels

‘We Will See Them in Court’: Environmental Lawyers Vow to Challenge Trump’s Repeal of Key Climate Finding

February 12, 2026
‘The Sky Isn’t Falling’: Providing Perspective on the Data Center Boom
Energy

‘The Sky Isn’t Falling’: Providing Perspective on the Data Center Boom

February 12, 2026
China Could Reach Peak Greenhouse Gas Emissions Sooner Than Beijing Planned, New Report Suggests
Fossil Fuels

China Could Reach Peak Greenhouse Gas Emissions Sooner Than Beijing Planned, New Report Suggests

February 12, 2026
Maryland Environmentalists Face Awkward Choice: Support Moore’s Budget Raid or Fight for Climate Goals
Energy

Maryland Environmentalists Face Awkward Choice: Support Moore’s Budget Raid or Fight for Climate Goals

February 12, 2026
Citing National Security, Trump Has Abandoned Fenceline Monitoring at Coke Ovens
Fossil Fuels

Citing National Security, Trump Has Abandoned Fenceline Monitoring at Coke Ovens

February 11, 2026
Firms join forces to deliver circular water solutions for UK industry
Water

Firms join forces to deliver circular water solutions for UK industry

February 11, 2026
Environmental Magazine

Environmental Magazine, Latest News, Opinions, Analysis Environmental Magazine. Follow us for more news about Enviroment and climate change from all around the world.

Learn more

Sections

  • Activism
  • Air
  • Climate Change
  • Energy
  • Fossil Fuels
  • News
  • Uncategorized
  • Water

Topics

Activism Air Climate Change Energy Fossil Fuels News Uncategorized Water

Recent News

‘We Will See Them in Court’: Environmental Lawyers Vow to Challenge Trump’s Repeal of Key Climate Finding

‘We Will See Them in Court’: Environmental Lawyers Vow to Challenge Trump’s Repeal of Key Climate Finding

February 12, 2026
Submersible for US military uses hydrogen to charge batteries

Submersible for US military uses hydrogen to charge batteries

February 12, 2026

© 2023 Environmental Magazine. All rights reserved.

No Result
View All Result
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Fossil Fuels
  • Water

© 2023 Environmental Magazine. All rights reserved.

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.