Friday, November 21, 2025
  • Privacy Policy
  • Contact
  • Terms & Conditions
Environmental Magazine
Advertisement
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Fossil Fuels
  • Water
No Result
View All Result
Environmental Magazine
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Fossil Fuels
  • Water
No Result
View All Result
Environmental Magazine
No Result
View All Result
Home News

Research will investigate risk of hidden microbial impact on CO2 storage

May 18, 2025
in News
A A

A new research project aims to explore how microbes in deep underground storage sites could impact the success of carbon capture and storage (CCS).

As the UK strives to reach Net Zero emissions by 2050, secure and permanent geological storage of CO₂ appears to be essential.

Storage in deep geological formations such as depleted oil and gas reservoirs and saline aquifers is believed to offer a promising solution. However, these underground environments host diverse microbial ecosystems, and their response to CO₂ injection remains poorly understood.

This knowledge gap poses a potential risk to long-term CO₂ storage integrity. While some microbial responses may be beneficial and enhance mineralogical or biological CO₂ sequestration, others could be unfavourable, leading to methane production, corrosion of infrastructure, or loss of injectivity.

The new flagship project – by The University of Manchester and global energy company Equinor ASA – global leaders in geological CO2 storage – will investigate how subsurface microbial communities respond to CO₂ injection and storage, highlighting both the potential risks and opportunities posed by these microbes.

Principal Investigator, Prof Sophie Nixon, BBSRC David Phillips and Dame Kathleen Ollerenshaw Fellow at The University of Manchester, said: “Over the past 20 years, scientists have tested storing CO₂ underground in real-world conditions, but we still know little about how this affects native and introduced microbes living deep below the surface.

“Previous studies have shown that injecting CO₂ underground actively changes microbial communities. In some cases, microbes initially decline but later recover, potentially influencing the fate of injected CO₂ in geological storage scenarios. However, these studies predate the advent of large-scale metagenomic sequencing approaches. A deep understanding of who is there, what they can do and how they respond to CO₂ storage is crucial for ensuring the long-term success of carbon capture and storage.”

The two-year project will collect samples from saline aquifer and oil producing sites to study how microbes living deep underground respond to high concentrations of CO2 by combining geochemistry, gas isotope analysis, metagenomic and bioinformatic approaches.

Project Co-Investigator, Dr Rebecca Tyne, a Dame Kathleen Ollerenshaw Fellow at The University of Manchester, said: “To date, Carbon Capture and Storage research has focused on the physiochemical behaviour of CO2, yet there has been little consideration of the subsurface microbial impact on CO2 storage. However, the impact of microbial processes can be significant. For instance, my research has shown that methanogenesis may modify the fluid composition and the fluid dynamics within the storage reservoir.”

Currently, the North Sea Transition Authority requires all carbon capture and storage sites to have a comprehensive ‘Measurement, Monitoring and Verification’ strategy, but microbial monitoring is not yet included in these frameworks. The project’s findings will be shared with industry stakeholders and published in leading scientific journals, helping to close this critical gap and shape future operational activities.

Project Lead, Leanne Walker, Research Associate in Subsurface Microbiology at The University of Manchester, said: “This project will help us understand the underground microbial communities affected by CO₂ storage—how they respond, the potential risks and benefits, and the indicators that reveal these changes.

“Our findings will provide vital insights for assessing microbiological risks at both planned and active CCS sites, ensuring safer and more effective long-term CO₂ storage”.

ShareTweetSharePinSendShare

Related Articles

News

Wet wipe island waste autopsy reveals extent of the sewer blockage challenge

November 20, 2025
News

New FOI data shows air quality budgets cut drastically as campaign group calls for their restoration

November 18, 2025
News

Massive illegal waste dump in Oxfordshire threatens Thames and adjacent river systems

November 17, 2025
News

First publicly-funded small modular reactors will be built in Anglesey

November 17, 2025
News

Direct Ocean Capture validated for commercial deployment, says energy giant

November 13, 2025
News

From microplastics to megastructures: Earthshot prize finalists reviewed

November 10, 2025

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

Ruling strengthens wildlife protection amid nutrient pollution concerns

October 22, 2025

Rich Countries’ Energy Transitions Threaten Indigenous Peoples and the Environment

June 5, 2025

Don't miss it

Fossil Fuels

International Effort to Curb Emissions of a Climate Super Pollutant Falls Short, UN Report Reveals

November 21, 2025
Activism

California Is Finally Updating Its Methane Landfill Rule

November 20, 2025
Fossil Fuels

Gas Pipeline Proposals in Virginia Multiply Through the South—and Worry Community Activists

November 20, 2025
Energy

One Key State Remains in Limbo on Climate and Clean Energy Policies As Several Others Retreat

November 20, 2025
Water

Study finds higher levels of antimicrobial resistance in surface water during winter

November 20, 2025
Fossil Fuels

Congress Axes Biden-Era Protections That Shielded Alaskan Wetlands From Drilling

November 20, 2025
Environmental Magazine

Environmental Magazine, Latest News, Opinions, Analysis Environmental Magazine. Follow us for more news about Enviroment and climate change from all around the world.

Learn more

Sections

  • Activism
  • Air
  • Climate Change
  • Energy
  • Fossil Fuels
  • News
  • Uncategorized
  • Water

Topics

Activism Air Climate Change Energy Fossil Fuels News Uncategorized Water

Recent News

International Effort to Curb Emissions of a Climate Super Pollutant Falls Short, UN Report Reveals

November 21, 2025

California Is Finally Updating Its Methane Landfill Rule

November 20, 2025

© 2023 Environmental Magazine. All rights reserved.

No Result
View All Result
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Fossil Fuels
  • Water

© 2023 Environmental Magazine. All rights reserved.

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.