Thursday, February 5, 2026
  • Privacy Policy
  • Contact
  • Terms & Conditions
Environmental Magazine
Advertisement
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Fossil Fuels
  • Water
No Result
View All Result
Environmental Magazine
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Fossil Fuels
  • Water
No Result
View All Result
Environmental Magazine
No Result
View All Result
Home News

New study confirms PFAS are absorbed through human skin

June 27, 2024
in News
A A

A study of 17 commonly used synthetic ‘forever chemicals’ has shown that these toxic substances can readily be absorbed through human skin.

The research, published in Environment International seemingly proves for the first time that a wide range of PFAS (perfluoroalkyl substances) – chemicals which do not break down in nature – can permeate the skin barrier and reach the body’s bloodstream.

PFAS are used widely in industries and consumer products from school uniforms to personal care products because of their water and stain repellent properties. While some substances have been banned by government regulation, others are still widely used and their toxic effects have not yet been fully investigated.

PFAS are already known to enter the body through other routes, for example being breathed in or ingested via food or drinking water, and they are believed to cause adverse health effects such as impaired liver function and decreased birth weight.

It has commonly been thought that PFAS are unable to breach the skin barrier, although recent studies have shown links between the use of personal care products and PFAS concentrations in human blood and breast milk. The new study is the most comprehensive assessment yet undertaken of the absorption of PFAS into human skin and confirms that most of them can enter the body via this route.

Lead author of the study, Dr Oddný Ragnarsdóttir carried out the research while studying for her PhD at the University of Birmingham. She explained: “The ability of these chemicals to be absorbed through skin has previously been dismissed because the molecules are ionised. The electrical charge that gives them the ability to repel water and stains was thought to also make them incapable of crossing the skin membrane.

“Our research shows that this theory does not always hold true and that, in fact, uptake through the skin could be a significant source of exposure to these harmful chemicals.”

The researchers investigated 17 different PFAS. The compounds selected were among those most widely used, and most widely studied for their toxic effects and other ways through which humans might be exposed to them. Most significantly, they correspond to chemicals regulated by the EU’s Drinking Water Directive.

In their experiments the team used 3D human skin equivalent models – multilayered laboratory grown tissues that mimic the properties of normal human skin, meaning the study could be carried out without using any animals. They applied samples of each chemical to measure what proportions were absorbed, unabsorbed, or retained within the models.

Of the 17 PFAS tested, the team found 15 substances showed substantial dermal absorption – at least 5% of the exposure dose. At the exposure doses examined, absorption into the bloodstream of the most regulated PFAS (perfluoro octanoic acid (PFOA)) was 13.5% with a further 38% of the applied dose retained within the skin for potential longer-term uptake into the circulation.

The amount absorbed seemed to correlate with the length of the carbon chain within the molecule. Substances with longer carbon chains showed lower levels of absorption, while compounds with shorter chains that were introduced to replace longer carbon chain PFAS like PFOA, were more easily absorbed. Absorption of perfluoro pentanoic acid for example was four times that of PFOA at 59%.

Study co-author, Dr Mohamed Abdallah, said “our study provides first insight into significance of the dermal route as pathway of exposure to a wide range of forever chemicals. Given the large number of existing PFAS, it is important that future studies aim to assess the risk of broad ranges of these toxic chemicals, rather than focusing on one chemical at a time.”

Study co-author, Professor Stuart Harrad, of the University of Birmingham’s School of Geography, Earth and Environmental Sciences, added: “This study helps us to understand how important exposure to these chemicals via the skin might be and also which chemical structures might be most easily absorbed. This is important because we see a shift in industry towards chemicals with shorter chain lengths because these are believed to be less toxic – however the trade-off might be that we absorb more of them, so we need to know more about the risks involved.”

ShareTweetSharePinSendShare

Related Articles

A rocky road ahead? EU risks running short of raw materials for renewables
News

A rocky road ahead? EU risks running short of raw materials for renewables

February 3, 2026
Cost-sharing model unlocks growth opportunities for connecting biomethane to the gas network
News

Cost-sharing model unlocks growth opportunities for connecting biomethane to the gas network

February 2, 2026
Late January arrests made over Oxfordshire illegal waste dump
News

Late January arrests made over Oxfordshire illegal waste dump

February 2, 2026
Waste heat from data centres could heat over 3.5 million UK homes
News

Waste heat from data centres could heat over 3.5 million UK homes

January 28, 2026
Record wasted wind could have powered every home in London in 2025
News

Record wasted wind could have powered every home in London in 2025

January 26, 2026
Biofilms might be key to supporting the health of space missions
News

Biofilms might be key to supporting the health of space missions

January 22, 2026

Leave a Reply Cancel reply

Your email address will not be published. Required fields are marked *

Recommended

A green steel pathway would turbocharge Ukraine’s post-war recovery, say researchers

A green steel pathway would turbocharge Ukraine’s post-war recovery, say researchers

June 12, 2024
USVs set to collect water pollution data in SW England pilot

USVs set to collect water pollution data in SW England pilot

June 6, 2024

Don't miss it

Mapping Unequal Climate Risks in a Northern California County
Fossil Fuels

Mapping Unequal Climate Risks in a Northern California County

February 5, 2026
Europe’s hidden methane impact from landfills: New study
Air

Europe’s hidden methane impact from landfills: New study

February 3, 2026
EV Charging Program Faces the Axe in Budget Bill
Energy

EV Charging Program Faces the Axe in Budget Bill

February 2, 2026
‘Toxic Colonialism’ on the Bay of Bengal
Activism

‘Toxic Colonialism’ on the Bay of Bengal

February 2, 2026
New Analysis Warns Trump Offshore Drilling Plan Could Trigger Thousands of Oil Spills
Fossil Fuels

New Analysis Warns Trump Offshore Drilling Plan Could Trigger Thousands of Oil Spills

February 1, 2026
Oil, Gas and Petrochemical Facilities Emitted 1.6 Million Pounds of Regulated Pollutants During Last Week’s Icy Weather
Fossil Fuels

Oil, Gas and Petrochemical Facilities Emitted 1.6 Million Pounds of Regulated Pollutants During Last Week’s Icy Weather

January 31, 2026
Environmental Magazine

Environmental Magazine, Latest News, Opinions, Analysis Environmental Magazine. Follow us for more news about Enviroment and climate change from all around the world.

Learn more

Sections

  • Activism
  • Air
  • Climate Change
  • Energy
  • Fossil Fuels
  • News
  • Uncategorized
  • Water

Topics

Activism Air Climate Change Energy Fossil Fuels News Uncategorized Water

Recent News

Mapping Unequal Climate Risks in a Northern California County

Mapping Unequal Climate Risks in a Northern California County

February 5, 2026
Europe’s hidden methane impact from landfills: New study

Europe’s hidden methane impact from landfills: New study

February 3, 2026

© 2023 Environmental Magazine. All rights reserved.

No Result
View All Result
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Fossil Fuels
  • Water

© 2023 Environmental Magazine. All rights reserved.

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.