Friday, March 31, 2023
  • Privacy Policy
  • Contact
  • Terms & Conditions
Environmental Magazine
Advertisement
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Transport
  • Water
No Result
View All Result
Environmental Magazine
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Transport
  • Water
No Result
View All Result
Environmental Magazine
No Result
View All Result
Home Air

Novel air filter captures wide variety of pollutants

February 24, 2023
in Air
A A

An air filter made out of corn protein instead of petroleum products can concurrently capture small particulates as well as toxic chemicals like formaldehyde that current air filters can’t, according to the group behind it.

The research could lead to better air purifiers, particularly in regions of the world that suffer from very poor air quality. Washington State University engineers report on the design and tests of materials for this bio-based filter in the journal Separation and Purification Technology.

“Particulate matter is not that challenging to filter but to simultaneously capture various kinds of chemical gas molecules, that’s more significant,” said Katie Zhong, professor in WSU’s School of Mechanical and Materials Engineering and a corresponding author on the paper.  “These protein-based air filtering materials should be very promising to capture multiple species of air pollutants.”

Poor air quality is a factor in diseases such as asthma, heart disease and lung cancer. Commercial air purifiers remove tiny particles in soot, smoke or car exhaust, which could be inhaled directly into the lungs, but air pollution also often contains other hazardous gaseous molecules, such as carbon monoxide, formaldehyde and other volatile organic compounds.

With micron-sized pores, typical high efficiency particulate air filters, also known as HEPA filters, can capture the small particles but aren’t able to capture gaseous molecules. They are most often made of petroleum products and glass, which leads to secondary pollution when old filters are thrown away, Zhong said.

The WSU researchers developed a more environmentally friendly air filter made from corn protein fibers that was able to simultaneously capture 99.5% of small particulate matter, similar to commercial HEPA filters, and 87% of formaldehyde, which is higher than specially designed air filters for those types of toxics.

The researchers chose corn to study because of its abundance as an agricultural product in the US The corn protein is also hydrophobic, which means that the protein repels water and could work well in a moist environment such as in a mask.

The amino acids in the corn protein are known as functional groups. When exposed at the protein’s surface, these functional groups act like multiple hands, grabbing the toxic chemical molecules. The researchers demonstrated this by exposing a functional group at the protein surface, where it grabbed formaldehyde. They theorize that further rearrangement of the proteins could develop a tentacle-like set of functional groups that could grab a variety of chemicals from the air.

“From the mechanism, it’s very reasonable to expect that this protein-based air filter could capture more species of toxic chemical molecules,” Zhong said.

The three-dimensional structure that they developed also offers more promise for a simple manufacturing method than thin films of proteins that the research team developed previously. They used a small amount of a chemical, polyvinyl alcohol, to glue the nanofibers together into a lightweight foam-like material.

“This work provides a new route to fabricating environmentally friendly and multi-functional air filters made from abundant natural biomass,” Zhong said. “I believe this technology is very important for people’s health and our environment, and it should be commercialized.”

The researchers would like to do more testing, including using a variety of functional group structures and other toxic chemical molecules. In addition to Zhong, the work was conducted by graduate student Shengnan Lin, Ming Luo, Flaherty assistant professor in the WSU School of Mechanical and Materials Engineering, and post-doctoral fellow Xuewei Fu. The work was funded by a U.S. Department of Agriculture Sun Grant.

ShareTweetSharePinSendShare

Related Articles

Air

Rail corridor will transport captured carbon from Ferrybridge

March 29, 2023
Air

Stratospheric risks? | Envirotec

March 29, 2023
Air

Carbon capture for the masses

March 28, 2023
Air

The worm turns for IAQ sensing?

March 28, 2023
Air

£10.7 million for local authorities

March 28, 2023
Air

Recovering forests regain a quarter of carbon lost from deforestation

March 27, 2023

Recommended

Indonesia’s Largest Fleet of Taxis Teams Up To Beat Ride-Hailing Apps

February 20, 2022

Union Minister Dr Jitendra Singh launches training programme for Science Administrators in Hyderabad; Also launches iGOT Modules

February 17, 2023

Don't miss it

Water

Chinese researchers find new water reservoir on the Moon

March 29, 2023
Trending

Redefine’s Dr Harikiran Chekuri on hair transplant solutions for women at any age now available in Hyderabad

March 29, 2023
Water

Closing the adaptation gap | Envirotec

March 29, 2023
Water

Polymer metering advance | Envirotec

March 29, 2023
Water

Wastewater redesign | Envirotec

March 29, 2023
Water

Energy saving in borehole pumping

March 28, 2023
Environmental Magazine

Environmental Magazine, Latest News, Opinions, Analysis Environmental Magazine. Follow us for more news about Enviroment and climate change from all around the world.

Learn more

Sections

  • Air
  • Energy
  • News
  • Trending
  • Uncategorized
  • Water

Topics

Bitcoin Champions League Explore Bali Golden Globes 2018 Grammy Awards Harbolnas Litecoin Market Stories United Stated

Recent News

Rail corridor will transport captured carbon from Ferrybridge

March 29, 2023

Chinese researchers find new water reservoir on the Moon

March 29, 2023

© 2022 Environmental Magazine. All rights reserved.

No Result
View All Result
  • Home
  • News
  • Climate Change
  • Energy
  • Recycling
  • Air
  • Transport
  • Water

© 2022 Environmental Magazine. All rights reserved.

This website uses cookies. By continuing to use this website you are giving consent to cookies being used. Visit our Privacy and Cookie Policy.